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This study is devoted to draw a mesoscopic nonequilibrium thermodynamics (mnet)-based descrip-11 
tion of the model soft material, such as that made of clusters of amphiphilic molecules or surfactants. The 12 
description offered also enters the region of nonlinear viscoelastic behaviour of soft-matter agglomerates, 13 
both in a fluctuation-driven (quantitatively, being realized in an synchronous mode) and some flow-14 
driven (mostly, qualitatively) regime. A special emphasis is placed on a novel concept, termed the emer-15 
gent (power-law) behaviour, which tries to effectively combine data available about specific soft-matter 16 
(complex) systems that under variety of physicochemical conditions often manifest a certain interesting 17 
mesoscopic properties. 18 
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1. Introduction 20 

Soft matter consists of materials whose constituents have a mesoscopic size (typi-21 

cally, 103–105 nm) for which kBT is the relevant energy scale, whence the softness at 22 

ambient conditions as a main landmark. Examples of soft-matter systems include 23 

polymers, colloidal suspensions, liquid crystals, foams, gels, membranes, biological 24 

and granular matter of all types, etc. Soft matter comprises a variety of states perhaps 25 

best distinguished by being dominated by thermal energies at room temperature, with 26 

quantum aspects generally of secondary importance. 27 

_________  
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The realization that soft matter contains innumerable examples of generalized 28 

elasticity, symmetry breaking, and many fluctuating degrees of freedom has re-opened 29 

classical fields of physics such as fluids (now frequently referred to as rheology [1], 30 

with non-Newtonian and structured-media aspects) and elasticity (membranes, fila-31 

ments, and anisotropic networks are all important and common aspects) for new theo-32 

retical and experimental investigations. For both generalities and subtleties on soft 33 

matter, and the physics one may play on it, let us encourage a reader to consult Ref. 34 

[2], in which two major features of any soft-matter (complex-fluid) system have been 35 

emphasized, namely, its complexity and viscoelasticity. For a more recent review, in 36 

which weak connectivity and entropic interactions as the major features, distinguish-37 

ing polyatomic (macromolecular) soft-matter systems from their non-polyatomic 38 

(small-molecule) counterparts, have been underlined, see [3]. 39 

As has been argued very recently, complexity might be a key, though still elusive 40 

and poorly defined, feature of such systems, being responsible for their emergent be-41 

haviour, which eventually leads to a multitude of dynamic mesostructures, appearing 42 

while their parametric zone is appropriately scanned [4] for reviewing the subject. 43 

Emergent behaviour is usually attributed to a physical system about which one may 44 

firmly say that its higher-level properties are not readily predictable from a detailed 45 

knowledge of its lower-level properties, such as those coming from the material sub-46 

units (atoms; molecules) alone. In a very real sense [4], emergence represents a de-47 

mocracy of physical scale: no size or time scale is more fundamental than any other. 48 

For some theoretical physicists such an assertion may imply: the renormalization-49 

group, and in particular, self-similarity ideas are somehow hidden behind such 50 

a claim. 51 

In this study, we would like to focus on one specific example of what one may, af-52 

ter seeing the argumentation developed in the paper, call the emergence in complex 53 

late-stage (model) matter agglomeration. The emergence discussed in our matter-54 

agglomeration example relies on detection and exploration of power laws that, being 55 

scale-free, by definition do not distinguish any physical scale the properties of which 56 

they are pretending to describe. In the presented model, we claim that the complexity 57 

arose from a coupling of two basic modes of the slowly evolving model soft-matter 58 

system: a certain growing mode with some mechanical-relaxation one, presumed, 59 

however, that a (mechanical) stress field is generated within the material agglomerate 60 

also under its late-stage growth. Some examples of such systems, in particular bio-61 

molecular and colloidal assemblages, have been contained in [5]. 62 

The paper is structured as follows. In the next section, we have made a quick tour 63 

toward the model soft-matter agglomeration at a mesoscopic level, paying special 64 

attention to its basic notions and some landmark features (Fig. 1) which have not been 65 

reported. In Section 3, we have looked at volume fluctuations in an agglomerate under 66 

two different phase-state conditions, attributed to densely as well as loosely packed 67 

matter assemblages, abbreviated by CP and LP matter agglomerations, respectively, 68 

concentrating mainly on the so-called synchronous (coupling) mode [5], also trying to 69 

answer the question: When late-stage matter agglomeration demands its mechanical 70 
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response? In Section 4, we have elaborated the CP and LP packing states even more, 71 

and looked more carefully at the soft agglomerate in its liquidus and solidus phase 72 

-state limits. The closing address, presented in sec. 5, will summarize what we have 73 

found. 74 

Fig. 1. How to differentiate between matter nano- (10–9 m) 

and micro-agglomerations (10–6 m), i.e. those occurring within the 

length scale of interest expressed by the present paper?  

The answer, coming from mnet, would be: For instance,  

and amongst many things, by letting the materials-science researcher 

know which local curvatures [1], either only the spontaneous  

or twice the mean (sphere), or even that of  

Gaussian type (cylinder) modify the surface tension conditions  

of any soft-matter agglomerate (for some example, see [6],  

and especially, ref. [22] therein)  

2. Quick tour toward model soft-matter  75 

agglomeration at a mesoscopic level 76 

There is a consequent and unambiguous method of deriving the main kinetic equa-77 

tion for the overall model matter agglomeration being applicable to soft-matter ag-78 

glomeration. The method is called mesoscopic nonequilibrium thermodynamics, mnet 79 

[7, 8]. It starts with the Gibbs equation which defines the variations of entropy [9, 10] 80 

 
1

( )S v t f dv
T

δ μ δ= − ,∫  (1) 81 

where ( )f f v t≡ ,  (see below), T  is the temperature, and ( )v tµ ,  is the chemical 82 

potential in a v -space, i.e. in the (hyper)volume space of the material agglomerate. 83 

The potential ( )v tµ ,  is given by (here, ( )v tµ µ≡ ,  is taken for brevity) 84 

 ln( )
B

k T afμ =   (2) 85 

where a is the activity coefficient, kB is the Boltzmann constant, and kBT stands for the 86 

thermal energy. Next, a is given in terms of a thermodynamic potential, denoted by  87 

Φ ≡ Φ(v). Thus, a reads now [8, 10] 88 

 ( )exp
B

a k TΦ= /   (3) 89 
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Providing the temporal derivative in Eq. (1) and after partially integrating it over 90 

both sides (assuming additionally that J ≡ J(v,t) vanishes at the ends of the phase 91 

space), one gets the entropy production, σE 92 

 
1

E
J

T v

μ
σ

∂
= −

∂
  (4) 93 

from which we may easily get the expression for the matter flux 94 

 
1

( )J L v
T v

μ∂
= −

∂
  (5) 95 

Here, we have assumed that the process is local in v. One could also consider, if 96 

necessary, a non-local case by [5, 8, 10] 97 

1( ) ( )J v dv L v v
T v

μ∂
′ ′= − ,

′∂
∫  98 

 Combining Eqs. (5), (2) and (3) one gets 99 

 ( )
1

B

f d
J L v k T f

Tf v dv

Φ∂⎡ ⎤
= − +⎢ ⎥∂⎣ ⎦

 (6) 100 

Now, let us define the mobility b(v) as  101 

1( ) ( )
B

Db v L v v
Tf k T

α

= =  102 

where D is a constant [5], and α reads 103 

 
1

1
d

α = −   (7) 104 

where d is the spatial dimension in which the described agglomeration occurs. The 105 

derived flux J is given by 106 

 ( )
d

J Dv f b v f
v dv

α

Φ
∂

= − −
∂

  (8) 107 

The obtained expression looks quite general, probably in spite of the power-law 108 

form (cluster–volume correlations) assumed in the Onsager coefficient L(v) [9]. At 109 

this stage of presentation, let us anticipate this form by stating explicitly 110 

 ( ) ( )
B

D v Dv k Tb v
α

= =   (9) 111 

which also implies b(v) ∝ vα. It means that both kinetic coefficients, namely that of 112 

diffusion as well as the one attributed to the drift term in Eq. (8), which for its own is 113 
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a kind of generalized Fick’s law, are power-dependent on v. The term vα represents 114 

the magnitude of the surface of a cluster (the contact area for an agglomeration event 115 

to take place), with the molecular cluster per se as the basic constituent of the ag-116 

glomerate at the mesoscopic (molecular cluster-based) level of description [5]. 117 

After deriving the flux (8) in its explicit form, we have to apply it to a local conti-118 

nuity equation: 119 

 ( ) ( ) 0f v t J v t
t v

∂ ∂
, + , =

∂ ∂
  (10) 120 

where v is the volume of a molecular cluster (a stochastic variable), f(v,t) is the distri-121 

bution function of the clusters at time t (having a meaning of the number density 122 

[11]), that means, f(v,t)dv is a relative number of clusters of a size taken from the narrow 123 

volume interval [v, v + dv]. This way, we may arrive at a Fokker–Planck–Kolmogorov 124 

(FPK)-type equation that governs the agglomeration dynamics [5, 10, 11]. 125 

It is instructive to transform the local partial differential equation (PDE) formula-126 

tion of the matter agglomeration into its possibly simple functional representation, 127 

abbreviated for further use by F-representation [12]. For doing it, let us state the mat-128 

ter flux, (8), in the following form 129 

 
( ) ( )

( ) ( ( ) ( ) )
( ) ( )

F f F f
J v t B v D v

f v t v f v t

δ δ
β

δ δ

∂
, = − +

, ∂ ,
  (11) 130 

where B(v) = b(v)dΦ(v)/dv, and β = 1/(kBT) is the so-called inverse thermal energy. 131 

Here δF( f )/δf(v,t) stands for the functional derivative, and the free-energy functional 132 

F( f ) is as follows: 133 

 
1

( ) ( ) ( ) ( )
2

F f f v t K v v f v t dvdv′ ′ ′= , − ,∫  (12) 134 

If one takes the kernel K, K( ) ( )v v v vδ′ ′− = −  (applying the delta Dirac distribution 135 

( )v vδ ′− ), i.e. when the “instantaneous” inter-cluster interaction is switched on, one 136 

provides 137 

 ( )
21

( ) ( )
2

F f f v t= ,   (13) 138 

which because of the power 2 in the equality obtained, suggests unambiguously the 139 

pairwise (binary) interactions between clusters, as is, for example, assumed in van der 140 

Waals (real) gases between the gas molecules within the framework of a mean-field 141 

description. In general, it is accepted for Lennard–Jones potential-driven systems, the 142 

class of which is quite broad. Notice, that in such a simple case just described, the 143 

energy functional F(f) can be set to be zero in both ends of the phase space v ∈ [0,∞] 144 

because the standard and physically justified boundary conditions (bcs) to be obeyed, 145 
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are: f(v = 0,t) = f(v = ∞,t) = 0 [11]. They are consistent with the natural mnet bcs that 146 

require the matter flux must vanish in both ends mentioned, too. This is, in turn, is 147 

very consistent with the well-known Kramers’ picture of the stochastic process with 148 

a single activation barrier (see [8], and refs. therein). Such a picture is typically of-149 

fered in terms of the FPK dynamics but may also be proposed in terms of the free 150 

-energy functional representation, which is actually the case presented here. 151 

Now, the chemical potential reads 152 

 
1 ( )

ln
2 ( )

eq

F f

F f
μ β=   (14) 153 

i.e., it is recovered in a Boltzmann-type (logarithmic) form, whereby 154 

 2
1

( )
2

eq eq
F f f=   (15) 155 

where feq = exp(–βΦ), well within the accuracy of a constant pre-factor [5]. Note that 156 

a pairwise interaction between clusters is still present when looking at Eq. (15). More-157 

over, note that if K(v – v′) ≠ δ(v – v′) were chosen, one would likely be able to model 158 

more complex interactions between clusters, which is usually of very interest to bio-159 

logical systems, such as protein aggregations under various physicochemical contexts 160 

[4]. The activity of the agglomerating system reads a = exp(βΦ), this way reproducing 161 

the form of  Eq. (3), where finally feq = 1/a is required. 162 

Both above kinetic-thermodynamic descriptions of the soft-matter agglomeration, the 163 

PDE-based of FPK type as well as that of F-functional representation, with the free-energy 164 

non-monotonous landscape staying behind it, enable one to proceed further toward getting 165 

its fluctuation-influenced characteristics as well as to differentiate between their principal 166 

forms, being matter-packing dependent (CP and LP), and depending mostly upon the fluc-167 

tuation-influenced behaviour as well as upon a certain temperature-caused change of con-168 

nectivity between clusters of which the material agglomarate is being made [5, 10]. Some 169 

d-dimensional considerations, where typically d = 1, 2, 3 [5], complete the overall compre-170 

hensive picture of various soft-matter clusterings. 171 

3. Volume fluctuations under two different phase-state  172 

conditions. When late-stage matter agglomeration  173 

demands its mechanical response? 174 

Herein, we would like to describe the matter agglomeration in a viscoelastic ma-175 

trix. Our description rests on the observation that it is realized by more or less vigor-176 

ous volume fluctuations of the clusters constituting the agglomerate. Though the flow 177 

of matter, in contrast to the following section, is not provided by means of the veloc-178 

ity gradient (Newton’s law), resulting in a drift, nevertheless, the drift term is present 179 
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in the current, see Eq. (8), thus it is generically present in the system. Moreover, the 180 

driving force of the process as a whole, which is typically the free energy decrease 181 

(also, the CP agglomeration is specifically driven by capillary forces), superimposes 182 

a directional matter flow on the matter-agglomerating Potts-type system under study 183 

[11]. The direction, however, cannot be globally viewed as, say, a line in the space, 184 

but one may think of a natural course of the process; locally, one might, of course, 185 

identify some geometrical directions. The origin of more vigorous volume fluctua-186 

tions, quantified by the reduced variance given below, can primarily be attributed to 187 

some thermal excitement of the soft-matter system. This is because the system is en-188 

tropic, which by the way stands for the main assumption of our mnet-involving for-189 

malism. A certain inflow or outflow of thermal energy submitted to the system, may 190 

simply cause either a disconnectivity or connectivity of the clusters, thus changing the 191 

overall inter-cluster space amongst them. A second physical set-up to which the vol-192 

ume fluctuations can be assigned is the interaction map within the emerging agglom-193 

erate. This interaction map is related to the degrees of freedom the system exhibits, or 194 

explores, rather. They, in turn, can be estimated somehow by realizing that they are 195 

“better viewed” in higher dimensional spaces, in the sense, that a d = 3 space has usu-196 

ally more degrees of freedom than its two-dimensional counterpart can have. 197 

As has been suggested above, the fluctuations σ2(t) can be different in different 198 

systems. In our case, if the LP agglomerations of loosely packed clusters emerge in 199 

the course of time t, they are evaluated to obey a power law, namely 200 

 2 1 ( 1)( ) d

LP
t tσ

/ +
∝   (16) 201 

whereas the CP-counterpart is related to the above by 202 

 2 2( ) ( )
d

CP LP
t tσ σ∝   (17) 203 

i.e., they proceed in a much more vigorous way, mostly because of the CP agglomer-204 

ates being denser than the LP flocks [5]; note, that σ2(t) are defined by the reduced 205 

variance in a standard way 206 

 

22 1

2

2
1

( ) ( )
( )

( )

v t v t
t

v t

σ

< > −< >
=

< >

  (18) 207 

where, in turn, the central moments take on a standard form, namely 208 

  
0

( ) ( )n nv t v f v t dv
∞

< >= ,∫   209 

For the LP agglomeration in the long-time limit one obtains [5] 210 

 [( 1) ] (2 )( ) , 0, 1, 2n n

v t t n
α α− + / −

< >∝ =   (19) 211 

whereas (under the same late-stage conditions) for CP agglomerations one appreciates 212 

another power law [5] 213 
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 ( 1) (2 )( ) , 0, 1, 2n n

v t t n
α− / −

< >∝ =   (20) 214 

From the above it is then seen that our fluctuation-driven agglomeration, being a 215 

stochastic process [10], is mostly governed by power laws. Thus, and so described, it 216 

appears to be a scale-free process, since the algebraic relation such as ω(x) ∝ xε is 217 

preserved under any arbitrary scale x change, such as x → λx for any real and nonzero 218 

scaling factor λ, and for an arbitrary power-type function ω, with exponent ε, which 219 

can be, for example, σ2 defined above. This can be viewed as a signature of the an-220 

nounced (see Introduction) emergent behaviour of the matter-agglomerating system. 221 

Next, if such an eruption of power laws is naturally present in the system (see pre-222 

sent as well as preceding section), let us proceed further along these lines. Namely, 223 

bearing in mind that we pretend to model agglomeration in a viscoelastic milieu, let us 224 

propose a coupling of the late-stage growing mode to some mechanical relaxation one 225 

[5]. If such a coupling existed, we would prefer to call it a synchronous mode of the 226 

late-stage (meaning: typically, very slow) agglomeration. This mode emerges when 227 

the LP agglomeration is switched on for the first time, typically by adequately in-228 

creasing T. It can be represented by the approximate formula: 229 

 1

QYσ σ
−

≈   (21) 230 

thus imposing that the quasi-yield stress σQY, emerging in the agglomerate is almost 231 

entirely due to the matter fluctuations in the system. In other words, the fluctuations 232 

in soft-matter system may also cause a small plastic effect, especially in the nano-233 

metre scale. For further argumentation accompanying the conjecture (21), one is en-234 

couraged to look into [5]. From the most general point of view, we opt for Eq. (21) 235 

since it supports very much the celebrated emergent behaviour [13], called by some 236 

researchers the middle may, i.e. the way of appreciation for mesoscopic matter or-237 

ganization, which is, by the way, well-described by mnet formalism proposed by the 238 

present study. A few other examples of mesoscopic systems successfully studied by 239 

mnet one can find in [14–16]: They mostly emphasize the so-called slow relaxation 240 

(ageing) effect, and possible variations of temperature with time, T(t), often observed 241 

in colloidal as well as some granular, i.e. rheologically nontrivial [1] systems. It inevi-242 

tably leads to an interesting temporal behaviour of the kinetic coefficients, e.g. those 243 

involved in Eq. (8). This can be of special interest for the LP agglomeration for which 244 

only one kinetic coefficient is of importance, since the drift term in Eq. (8)) can be 245 

washed out. This is D(v) that can be “renormalized” to some D(v,t)  either in a phe-246 

nomenological [17] or in some more systematic, and therefore advised, way to follow. 247 

In particular, in [18] the presence of memory effects in FPK non-Markovian dynamics 248 

has been treated by means of mnet-involving formalism, where the corresponding 249 

Onsager coefficients [9] were found in terms of generalized regression laws that in-250 

corporate moments of the probability distribution higher than the second one. 251 

The above conjecture, Eq. (21), yields slower than exponential, herein algebraic 252 

temporal behaviour 253 
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1 (a( 1))

( ) , 1
d

QY t t tσ
− / +

∝ >>  (22) 254 

It is assumed that 1/a is a system-dependent constant, typically close to one half, i.e. to the 255 

characteristic Hall–Petch exponent [19], see below. The constant characterizes somehow 256 

quantitatively the strengthening mechanism of the material output viz. soft-matter object. 257 

Moreover, it is worth realizing that Eq. (21) offers an inter-connecting relationship be-258 

tween a “macroscopic” quantity, here σQY, and its clearly microscopic alter ego, namelyσ2, 259 

which is undoubtedly in the spirit of the Onsager’s regression hypothesis, though a more 260 

precise argumentation must certainly follow such an assertion [9]. 261 

Following this idea, now we will outline a quasi-phenomenological argumentation 262 

which shows that the viscoelastic milieu is responsible for memory effects similar to 263 

those shown, for example,  in Eqs. (20) and (22). In this approximation, the manifesta-264 

tion of the viscoelastic and, in general, non-Newtonian effects (which will be ana-265 

lyzed in detail in the following section) can be characterized through the time depend-266 

ence of the kinetic coefficient D(v,t), which may, in general, be expressed through the 267 

relation 268 

 1

0
( ) ( )D v t t b v

αβ μ−

, =   (23) 269 

where μ(t) has the dimension of inverse of time and b0 accounts for the correct dimen-270 

sion in the resulting FPK equation 271 

 1

0
( ) ( )f v t t b v f

t v v

αβ μ−

∂ ∂ ∂⎡ ⎤
, = ⎢ ⎥∂ ∂ ∂⎣ ⎦

  (24) 272 

which was obtained by assuming T >> Tth, where Tth stands for a temperature value 273 

above which the LP agglomeration occurs [5], and by substituting Eq. (8) for (10) 274 

after using (9). Notice that D(v,t) is precisely the corresponding Onsager coefficient 275 

entering the linear law (8); for a specific form of D(v,t), characteristic of a biopolymer 276 

CP agglomeration of spherulitic type, taking place in some fluctuating environment, 277 

one is encouraged to see [17]. To sketch how the power-law behaviour of the mo-278 

ments of f(v,t) arise according with this model, let us consider a simple case in which 279 

the solution of Eq. (24) can be splitted into the product f(v,t)  = g(t)h(v). Avoiding the 280 

details of the calculations (see, e.g., [20]), a little thought shows that, even in the sim-281 

ple case, the behaviour of the time dependent part ( )g t  is determined by the proper-282 

ties of the viscoelastic milieu as follows 283 

 
0

ln ( ) ( )
d

g t c t
dt

μ= −   (25) 284 

where c0 is a constant arising from the variable separation. At the late-stage of grow-285 

ing, characterized by the slow relaxation of the system, the dissipation rate of the sys-286 

tem depends, in general, on the “age” of the system and can be well described in the 287 

form of  288 
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( )0

0

( )
t

t
t t

δξ
μ ∝  289 

where ξ is a constant and the exponent δ characterizes mean viscoelastic properties of 290 

the medium, and may depend, in general, on the size of the molecular clusters. Here, 291 

t0 is the initial time measured. This dependence of μ(t) can, in principle, be calculated 292 

by analyzing the elastic properties of the background medium as a continuum; see, for 293 

example, Ref. [21], where this idea has been implemented to describe anomalous 294 

transport in an intracellular medium. Applying this relation to Eq. (25), one obtains 295 

that  296 

( )0 0/ /
( ) e

c t t

g t
δ

ξ δ
∝  297 

 i.e. it is here in the form of a stretched exponential. This relation, valid for a suffi-298 

ciently wide range of times, can, for very long times t >> t0, be expressed in a more 299 

convenient form by expanding the exponential up to first order in its argument, thus 300 

providing 301 

 ( )20 0( )
c t

g t O t
t

δ

δξ

δ

−

⎛ ⎞
∝ +⎜ ⎟

⎝ ⎠
  (26) 302 

This relation is directly related with the relaxation of the moments of the distribu-303 

tion as, for example, the reduced variance σ(t), see above. In particular, for this func-304 

tion one obtains, without taking into account constants arising from averaging over 305 

the volume space, the relation σ(t) ≈ g(t)–1 – 1, which can finally be expressed as 306 

 
0 0

( )
t

t

c t

δ

δ
σ

ξ

⎛ ⎞
∝ ⎜ ⎟

⎝ ⎠
  (27) 307 

From this point of view, it is plausible to assume that during the slow stage of the 308 

dynamics of the system, there appears a coupling between the relaxation of the elastic 309 

stresses σQY(t) and that related with the volume fluctuations, benchmarking both the 310 

CP and LP matter agglomeration, characterized by σ(t). This coupling takes place 311 

because the viscoelastic properties of the medium have the same characteristic time 312 

scale μ(t). Thus, in similar but slightly different form as in Ref. [5], stress relaxation 313 

can be described through the following equation [22]: 314 

( )
( ) 0

QY

QY

d t
t

dt

σ

μ σ+ =   315 

for another soft-matter scenario drawn, therein for describing the hydration kinetics of 316 

relaxing model lipid membranes. This equation can be obtained from the mnet-317 

formalism by following a method similar to that followed in [14, 15]. Notice that by 318 
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integrating this equation and taking the long time approximation consistent with that 319 

to obtain Eq. (26), one arrives at the expression 320 

 0( )QY

t
t

t

δ

σ
⎛ ⎞

∝ ⎜ ⎟
⎝ ⎠

  (28) 321 

The last equation seems to give a solid basis for the before mentioned conjecture 322 

given in (21). 323 

4. Soft agglomerate in its liquidus and solidus  324 

as well as intermediate phase-state limits 325 

To get a more comprehensive picture of the soft-matter agglomeration, let us ex-326 

plore it further taking into account its non-Newtonian character, again well described 327 

by the Ostwald–de Waele laws of power type, interconnecting the shear stress with 328 

the shear rate [23]. From the below stated it will be seen that the agglomeration under 329 

flow, both of CP and LP type, somehow interpolates between two phase-state limits, 330 

accordingly to LP and CP agglomerations to be named: liquidus and solidus limits. 331 

Note that the mostly nonlinear viscoelastic properties of the agglomerating system are 332 

pronounced here even more. 333 

The nonlinear flow curve of CP and LP agglomerates of deformable droplets, rigid 334 

particles, and flexible polymer chains dispersed in a viscous medium exhibit a typical 335 

power-law behaviour, i. e. the shear viscosity, /
h

η σ γ= � , is a non-linear function of 336 

shear rate γ� , where σh is the shear stress measured in a homogeneous shear flow .γ�  337 

The non-linear flow curve of the agglomerating system is expected to have three 338 

regimes being characterized by different shapes ( )η γ� : The low shear rate regime with 339 

a Newtonian plateau for the LP agglomerates and an infinite shear viscosity for the 340 

CP agglomerates, an intermediate regime, and a high shear rate regime. In what fol-341 

lows the three regimes will be explained and interpreted from a physical point of 342 

view: In the low shear rate regime the structural forces (e.g. Brownian forces) are 343 

stronger than the orienting forces due to the externally imposed flow. Consequently, 344 

we do not observe flow-induced structural changes and the shear viscosity is constant, 345 

η0. The infinite shear viscosity of the CP agglomerates is due to the constant yield 346 

stress, τ0. This means that the CP agglomerates behave as a rigid body under applica-347 

tion of a small shear force and thus the CP agglomerates do not flow. 348 

According to the Hall–Petch relation the yield stressτ0 is given as 349 

 1 2

0 2 1
K d Kτ

− /
= +   (29) 350 

where K1 and K2 are material-dependent constants and d is proportional to the average 351 

radius of the clusters (grains). Note that the average radius d is taken as a scalar pa-352 
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rameter and thus also the Hall–Petch relation does not account for anisotropic 353 

stresses. (In the same vein, the stresses arising during the late-stage matter agglomera-354 

tion, when no special “macroscopic” matter flow is detected, are involved as zero-355 

rank tensors in the description offered [5].) Moreover, note that the above equation is 356 

mostly expected to hold only for CP agglomerates which exhibit a yield behaviour. 357 

For LP agglomerates, the stress tensor is isotropic with its trace corresponding to 358 

three times the hydrostatic pressure. It would be interesting to adopt the theoretical 359 

framework used in [1] to derive a set of dynamic equations for a complex material 360 

with yield stress which takes into account anisotropic material behaviour in shear and 361 

elongational deformation. 362 

In the intermediate shear rate regime of the non-linear flow curve, the hydrody-363 

namic (or viscous) forces are of the same order of magnitude as the structural 364 

(e.g. Brownian) forces. Now one observes an orientation and deformation of the LP 365 

agglomerates which correlates with a decrease of the shear viscosity. For the CP ag-366 

glomerates the flow stresses exceed the yield stress τ0 and the material begins to flow. 367 

Also for the CP agglomerates one can observe a deformation and orientation of the 368 

microstructure which leads to a decrease of the shear viscosity. The reason for the 369 

decrease of the shear viscosity is that the microstructural components orient in flow 370 

thus lowering their flow resistance. This is seen as a decrease of the shear viscosity. 371 

In the high shear rate regime, it is possible to observe a second Newtonian plateau 372 

and a shear thickening regime, i.e. a small increase of the shear viscosity for the CP as 373 

well as the LP agglomerates. The microstructural interpretation of this behaviour is 374 

the formation of aggregates in a high shear flow which increase the flow resistance 375 

and which correlates with the increase of the shear viscosity. 376 

The qualitative behaviour described above is the most important non-Newtonian 377 

flow behaviour of CP and LP agglomerates [24]. Note that the decrease of the Newto-378 

nian viscosity in the intermediate shear rate regime can be several orders of magnitude 379 

which is very important for the processing of these fluids in chemical or food indus-380 

tries. However, the shear thinning behaviour displayed in a figure in [23], in general, 381 

correlates with other non-Newtonian effects such as normal stresses due to elastic 382 

material behaviour. These non-Newtonian effects are normal stresses in homogeneous 383 

shear flows. Physically this means, e.g., that in order to maintain steady shear flow in 384 

a non-Newtonian liquid one needs not only a shear stress, σh, but also normal stresses, 385 

e.g. acting perpendicular to the confining plates of the liquids. Further non-Newtonian 386 

effects can be observed in time-dependent shearing flows, e.g. in start-up or cessation 387 

of steady shearing flow. In such flows, one observes a transient behaviour of the flow 388 

stresses (i.e., shear stresses and normal stress differences). 389 

As for some crude analogies between fluctuation-driven and flow-driven matter 390 

agglomeration, one may classify them both as activated processes, underlying to some 391 

extent the mentioned Kramers’ picture, where the energy barrier is permanently sur-392 

mounted. In both cases, i.e. in the random walk theory [5, 10, 11] as well as in the 393 

Ostwald–de Waele dynamic relations for the flow [23], qualitatively the same power-394 
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law (ultimately, also temporal) behaviour may appear: Normal diffusion (random 395 

walk) would be equivalent to Newtonian behaviour of the system, whereas the non-396 

Newtonian behaviour would correspond to the anomalous diffusion (random walk), 397 

being either subdiffusion (slow or damped motion) or superdiffusion (vigorous or 398 

turbulent motion). This way, the analogy is completed, at least from the qualitative 399 

viewpoint. 400 

5. Closing address 401 

Let us start with a motto which itself characterizes well the basic motivation of our 402 

study. This motto reads: It is not enough to breakeg matter into its most fundamental 403 

pieces, and then to reassemble them, just to gain some, even poor, understanding 404 

about the output (matter) assemblage, see Sec. 1. According to it, we are of the opin-405 

ion that the offered mnet-based description is a good tool [5, 6, 10, 14, 15, 18] for 406 

dealing with complex matter agglomerations, because for many important purposes, 407 

studying and comprehending matter organizations is sufficient just at the mesoscopic 408 

(molecular-cluster) based level of description. 409 

For example, in protein aggregation and crystal growth ([4] and refs. therein), efforts 410 

of many researchers have been distributed over controlling really important details of 411 

the process. As a consequence, this led to (almost) full understanding of some specific 412 

(say, selected for special purpose) protein aggregations, postponing, unfortunately, to 413 

some, sometimes quite large extent, principia of matter organization, and trying to re-414 

place them by computer simulations [25]. It is a necessary way, of course, but it should 415 

be complemented by some investigations on the principia that have to go in parallel with 416 

those detailed studies. In particular, in authors’ very individual (and specific) opinion 417 

there is a need to enlighten unambiguously how the speed of the crystal, being attempted 418 

to maintain by an experimenter at a constant value, which is the most stable hydrody-419 

namic mode of the process, will influence the obtained structural output of the non-420 

Kossel type, emerging from such an entropic environment [25]. 421 

When advocating for the mnet-based modelling, one is obliged to answer quite 422 

a basic question: What do we loose and what do we gain while doing so? Certainly, 423 

we cannot take control over most of the microscopic quantities of any agglomeration 424 

that we are dealing with – this is without question. But we may still have, just in a 425 

parametric manner, quite many of them, see [25]. Moreover, we are capable of look-426 

ing into key microscopic details, thus ascertaining quite univocally, when for example 427 

the local curvatures of the end product, modifying significantly the surface-tension 428 

conditions, see Fig. 1, may really change the overall system behaviour [25]. This even 429 

enables one to first differentiate between nano- and micro-agglomerations of soft-430 

matter (see [5, 6], and refs. therein). 431 

What do we gain by applying mnet? Above all, a quite simple (but by no means 432 

exhaustive!) insight into the above underscored principia of matter organization [10] 433 

just in an entropic environment; also, a tractable description, preferentially in terms of 434 
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the FPK framework, or as freshly included in Sec. 2, by means of the energy-fun- 435 

ctional method. The limitations of applying mnet have been explicitly stated for the 436 

first time in [8], though many studies along these lines appeared before, giving the 437 

final address ([7], and refs. therein). 438 

A careful reader will also notice that high appreciation is given here to almost om-439 

nipresent power laws that arise from the proposed modelling. This is, for sure, very 440 

consistent with the emergent behaviour assigned in last years to soft-matter systems 441 

[3, 4, 13]. The question is, however: How far may such idealization go? 442 

Concluding this section, let us mention that, in contrast with the material presented 443 

in our previous study [5], we did not include any considerations on d-dimensional as 444 

well as on chaotic behaviour of the model soft-matter system. They are really interest-445 

ing per se. For example, the picture drawn under chaotic vs. regular matter-446 

organization regime is consistently defined by the type of definition of Sinai–447 

Kolmogorov (fractal) entropy which corresponds directly to the aggregation rate in 448 

the space of Euclidean dimension d. (Some signatures of the Farey’s three in the d-449 

dimensional construction of the model can also be announced [26], according to the 450 

below mentioned Bethe-lattice landmarks.) This rate, in turn, is uniquely defined 451 

based on the volume fluctuation σ2 derived in Sect. 3. 452 

To sum up, and according to what has been obtained in [5], we can list even more: 453 

(i) an algebraic decay in time of the internal stresses propagating along the inter-454 

cluster spaces (depletion zones) of lower viscosity has to be underscored as an inter-455 

esting phenomenon revealed; (ii) a gelling-type effect with microstructural con-456 

straints, due to the critical relaxation exponent of the process, that bears a Flory 457 

–Stockmayer-type, though d-dependent, mean-field approximation to gelling systems, 458 

clearly of the form of the critical percolation probability, such as 459 

( ) 1 ( ( ) 1)p d q d= / − , where ( ) 2( 1) 1q d d= + + , is possible to obtain by the present 460 

mnet model; (iii) an interesting behaviour, pertaining to a way of developing the two 461 

basic dynamic constituents of the process, i.e. late-time matter migration and me-462 

chanical relaxation [5], namely, that the rates of both of them obey the mean-463 

harmonicity rule in dimension d , resembling partially the case of transient coagula-464 

tion in aerosols and/or hydrosols [27], such as biopolymers dispersed in water solu-465 

tion, interpenetrating between the so-called free-molecule and continuum levels of 466 

matter microstructural organization, can bee seen; the synchronous mode, because of 467 

the emergent behaviour, might resemble to some reasonable extent a SOC (self-468 

organized criticality) phenomenon [28], which goes in the space d  in a common 469 

mean-harmonic [5] and continuum-percolative [11] way, showing up similarity rela-470 

tions both in cluster-size space and time domains [29]. 471 
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